Математическая логика

  • Математика XIX века. Математическая логика. Алгебра. Теория чисел. Теория вероятностей. -М., Наука, 1978. – 255 с.Предлагаемый вниманию читателей коллективный труд «Математика XIX века», за которым последует «Математика XX века», служит продолжением трехтомной «Истории математики с древнейших времен до начала XIX столетия», опубликованной в 1970—1972 гг. Ч По соображениям, о которых говорится далее, мы в части XX в. ограничиваемся его первыми четырьмя десятилетиями. Общие установки авторского коллектива данного труда остаются такими же, какие были высказаны в предисловии к трехтомнику.
  • Воронов М.В., Мещеряков Г.П. Высшая математика для экономистов и менеджеров. Серия «Шпаргалки». Ростов н/Д: Феникс, 2004. — 288 с.
    Изложение материала легко усваивается и быстро запоминается.
    Книга сэкономит вам время — подготовит к экзамену в предельно короткий срок и поможет получить высший балл. В ней ответы на все каверзные вопросы, поставленные самым строгим экзаменатором.
  • Калужнин Л. А. Элементы теории множеств и математической логики в школьном курсе математики. Пособие для учителей. – М., «Просвещение», 1978. 88 с. с. ил.
    В книге дается краткое изложение элементов теории множеств и математической логики и показывается, как некоторые темы алгебры, геометрии и математического анализа могут рассматриваться с единой точки зрения. Приводятся исторические сведения о возникновении и развитии теории множеств и математической логики.
  • Аляев Ю.А. Тюрин С.Ф. Дискретная математика и математическая логика. — М.: Финансы и статистика, 2006. — 368 с.
    Рассматриваются основные темы дискретной математики и математической логики: теория множеств, элементы комбинаторики, теория графов, теория переключательных функций и автоматов, теория кодирования, формальная логика, логические исчисления, формальные теории и теория алгоритмов, элементы теории нечетких множеств. Сложные вопросы математики рассматриваются на простых примерах. Большая часть материала снабжена методическими разработками авторов. Имеются задания для самостоятельной работы студентов. Для студентов вузов, обучающихся по специальностям “Прикладная информатика в экономике”, “Экономика и управление на предприятии”, а также для преподавателей.
  • Лавров И. А., Максимова Л. Л. Задачи по теории множеств, математической логике и теории алгоритмов.— М.: Физматлит, 2004. -256 с.
    В книге в форме задач систематически изложены основы теории множеств, математической логики и теории алгоритмов. Книга предназначена для активного изучения математической логики и смежных с ней наук. Задачи снабжены указаниями и ответами. Все необходимые определения сформулированы в кратких теоретических введениях к каждому параграфу. Сборник может быть использован как учебное пособие для математических факультетов университетов, педагогических институтов, а также в технических вузах при изучении кибернетики и информатики. Для математиков — алгебраистов, логиков и кибернетиков.
  • Нефедов В. Н., Осипова В. А. Курс дискретной математики: Учеб. пособие.—М.; Изд-во МАИ, 1992.—264 с: ил. ISBN 5-7035-0157-Х
    Излагаются основы современной дискретной математики. Рассматриваются вопросы, связанные с математической логикой, теорией алгебраических систем, комбинаторикой, теорией графов. Приводится ряд практических задач и даются алгоритмы их решения.
    Учебное пособие предназначено для студентов, обучающихся по специальности сПрикладная математика», но может оказаться полезным также и студентам экономических и технических факультетов, изучающих курс «Дискретная математика»
  • Соболева Т.С. Дискретная математика: учебник для студ. вузов / Т. С.Соболева, А. В.Чечкин; под ред. А. В.Чечкина. — М.: Издательский центр «Академия», 2006. — 256 с. — (Университетский учебник. Сер. Прикладная математика и информатика). ISBN 5-7695-2823-0
    В учебнике рассмотрены общие (множества и отношения, алгебра и топология) и специальные (математическая логика, математическая
    кибернетика, математическая информатика) вопросы дискретной математики. Для студентов высших учебных заведений. Может быть полезен аспирантам, научным работникам и специалистам в области прикладной математики и современных наукоемких информационных технологий.
  • Спирина М. С. Дискретная математика: Учебник для студ. учреждений сред. проф. образования / М. С. Спирина, П. А. Спирин. — М.: Издательский центр «Академия», 2004. — 368 с. ISBN 5-7695-1496-5
    Представляет собой углубленный междисциплинарный курс и содержит теоретический материал по традиционным темам дискретной математики и некоторые вопросы классической логики. В каждой главе есть исторический материал, разобранные задачи с указанием методов их решений, система упражнений для самостоятельной работы.
    Для студентов и преподавателей учреждений среднего профессионального образования, связанных с информационными системами, компьютерным моделированием, разработкой программных продуктов и автоматизированных систем.
  • Игошин В.И. Математическая логика и теория алгоритмов : учеб. пособие для студ. высш. учеб. заведений / В. И. Игошин. — 2-е изд., стер. — М. : Издательский центр «Академия», 2008. — 448 с.
    Предлагаемое учебное пособие составляет основу комплекта по курсу математической логики и теории алгоритмов, в который также входит сборник задач (Игошин В.И. Задачи и упражнения по математической логике и теории алгоритмов).
  • Карри Х. Б. Основания математической логики: Пер. с англ. – М., Мир, 1969. – 568 с.
    Книга американского ученого посвящена детальному изучению основных понятий математической логики на современном этапе. Она содержит общую теорию формальных систем и исчислений. После детального обсуждения общеметодологических вопросов автор последовательно описывает исчисления, содержащие импликацию, отрицание и кванторы. Последняя глава знакомит читателя с некоторыми вопросами теории модальностей. Последовательный конструктивный подход характерен для всех доказательств и определений.